00001 <?xml version="1.0" standalone="no"?> 00002 <!DOCTYPE section PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN" 00003 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd" [ 00004 00005 ]> 00006 00007 <section id="vorbis-spec-helper"> 00008 <sectioninfo> 00009 <releaseinfo> 00010 $Id: 09-helper.xml 7186 2004-07-20 07:19:25Z xiphmont $ 00011 </releaseinfo> 00012 </sectioninfo> 00013 <title>Helper equations</title> 00014 00015 <section> 00016 <title>Overview</title> 00017 00018 <para> 00019 The equations below are used in multiple places by the Vorbis codec 00020 specification. Rather than cluttering up the main specification 00021 documents, they are defined here and referenced where appropriate. 00022 </para> 00023 00024 </section> 00025 00026 <section> 00027 <title>Functions</title> 00028 00029 <section id="vorbis-spec-ilog"> 00030 <title>ilog</title> 00031 00032 <para> 00033 The "ilog(x)" function returns the position number (1 through n) of the highest set bit in the two's complement integer value 00034 <varname>[x]</varname>. Values of <varname>[x]</varname> less than zero are defined to return zero.</para> 00035 00036 <programlisting> 00037 1) [return_value] = 0; 00038 2) if ( [x] is greater than zero ){ 00039 00040 3) increment [return_value]; 00041 4) logical shift [x] one bit to the right, padding the MSb with zero 00042 5) repeat at step 2) 00043 00044 } 00045 00046 6) done 00047 </programlisting> 00048 00049 <para> 00050 Examples: 00051 00052 <itemizedlist> 00053 <listitem><simpara>ilog(0) = 0;</simpara></listitem> 00054 <listitem><simpara>ilog(1) = 1;</simpara></listitem> 00055 <listitem><simpara>ilog(2) = 2;</simpara></listitem> 00056 <listitem><simpara>ilog(3) = 2;</simpara></listitem> 00057 <listitem><simpara>ilog(4) = 3;</simpara></listitem> 00058 <listitem><simpara>ilog(7) = 3;</simpara></listitem> 00059 <listitem><simpara>ilog(negative number) = 0;</simpara></listitem> 00060 </itemizedlist> 00061 </para> 00062 00063 </section> 00064 00065 <section id="vorbis-spec-float32_unpack"> 00066 <title>float32_unpack</title> 00067 00068 <para> 00069 "float32_unpack(x)" is intended to translate the packed binary 00070 representation of a Vorbis codebook float value into the 00071 representation used by the decoder for floating point numbers. For 00072 purposes of this example, we will unpack a Vorbis float32 into a 00073 host-native floating point number.</para> 00074 00075 <programlisting> 00076 1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result) 00077 2) [sign] = [x] bitwise AND 0x80000000 (unsigned result) 00078 3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result) 00079 4) if ( [sign] is nonzero ) then negate [mantissa] 00080 5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) ) 00081 </programlisting> 00082 00083 </section> 00084 00085 <section id="vorbis-spec-lookup1_values"> 00086 <title>lookup1_values</title> 00087 00088 <para> 00089 "lookup1_values(codebook_entries,codebook_dimensions)" is used to 00090 compute the correct length of the value index for a codebook VQ lookup 00091 table of lookup type 1. The values on this list are permuted to 00092 construct the VQ vector lookup table of size 00093 <varname>[codebook_entries]</varname>.</para> 00094 00095 <para> 00096 The return value for this function is defined to be 'the greatest 00097 integer value for which <varname>[return_value] to the power of 00098 [codebook_dimensions] is less than or equal to 00099 [codebook_entries]</varname>'.</para> 00100 00101 </section> 00102 00103 <section id="vorbis-spec-low_neighbor"> 00104 <title>low_neighbor</title> 00105 00106 <para> 00107 "low_neighbor(v,x)" finds the position <varname>n</varname> in vector <varname>[v]</varname> of 00108 the greatest value scalar element for which <varname>n</varname> is less than 00109 <varname>[x]</varname> and vector <varname>[v]</varname> element <varname>n</varname> is less 00110 than vector <varname>[v]</varname> element <varname>[x]</varname>.</para> 00111 00112 <section id="vorbis-spec-high_neighbor"> 00113 <title>high_neighbor</title> 00114 00115 <para> 00116 "high_neighbor(v,x)" finds the position <varname>n</varname> in vector [v] of 00117 the lowest value scalar element for which <varname>n</varname> is less than 00118 <varname>[x]</varname> and vector <varname>[v]</varname> element <varname>n</varname> is greater 00119 than vector <varname>[v]</varname> element <varname>[x]</varname>.</para> 00120 00121 </section> 00122 00123 <section id="vorbis-spec-render_point"> 00124 <title>render_point</title> 00125 00126 <para> 00127 "render_point(x0,y0,x1,y1,X)" is used to find the Y value at point X 00128 along the line specified by x0, x1, y0 and y1. This function uses an 00129 integer algorithm to solve for the point directly without calculating 00130 intervening values along the line.</para> 00131 00132 <programlisting> 00133 1) [dy] = [y1] - [y0] 00134 2) [adx] = [x1] - [x0] 00135 3) [ady] = absolute value of [dy] 00136 4) [err] = [ady] * ([X] - [x0]) 00137 5) [off] = [err] / [adx] using integer division 00138 6) if ( [dy] is less than zero ) { 00139 00140 7) [Y] = [y0] - [off] 00141 00142 } else { 00143 00144 8) [Y] = [y0] + [off] 00145 00146 } 00147 00148 9) done 00149 </programlisting> 00150 00151 </section> 00152 00153 <section id="vorbis-spec-render_line"> 00154 <title>render_line</title> 00155 00156 <para> 00157 Floor decode type one uses the integer line drawing algorithm of 00158 "render_line(x0, y0, x1, y1, v)" to construct an integer floor 00159 curve for contiguous piecewise line segments. Note that it has not 00160 been relevant elsewhere, but here we must define integer division as 00161 rounding division of both positive and negative numbers toward zero. 00162 </para> 00163 00164 <programlisting> 00165 1) [dy] = [y1] - [y0] 00166 2) [adx] = [x1] - [x0] 00167 3) [ady] = absolute value of [dy] 00168 4) [base] = [dy] / [adx] using integer division 00169 5) [x] = [x0] 00170 6) [y] = [y0] 00171 7) [err] = 0 00172 00173 8) if ( [dy] is less than 0 ) { 00174 00175 9) [sy] = [base] - 1 00176 00177 } else { 00178 00179 10) [sy] = [base] + 1 00180 00181 } 00182 00183 11) [ady] = [ady] - (absolute value of [base]) * [adx] 00184 12) vector [v] element [x] = [y] 00185 00186 13) iterate [x] over the range [x0]+1 ... [x1]-1 { 00187 00188 14) [err] = [err] + [ady]; 00189 15) if ( [err] >= [adx] ) { 00190 00191 16) [err] = [err] - [adx] 00192 17) [y] = [y] + [sy] 00193 00194 } else { 00195 00196 18) [y] = [y] + [base] 00197 00198 } 00199 00200 19) vector [v] element [x] = [y] 00201 00202 } 00203 </programlisting> 00204 00205 </section> 00206 00207 </section> 00208 00209 </section> 00210 00211 </section>