00001 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 00002 <html> 00003 <head> 00004 00005 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-15"/> 00006 <title>Ogg Vorbis Documentation</title> 00007 00008 <style type="text/css"> 00009 body { 00010 margin: 0 18px 0 18px; 00011 padding-bottom: 30px; 00012 font-family: Verdana, Arial, Helvetica, sans-serif; 00013 color: #333333; 00014 font-size: .8em; 00015 } 00016 00017 a { 00018 color: #3366cc; 00019 } 00020 00021 img { 00022 border: 0; 00023 } 00024 00025 #xiphlogo { 00026 margin: 30px 0 16px 0; 00027 } 00028 00029 #content p { 00030 line-height: 1.4; 00031 } 00032 00033 h1, h1 a, h2, h2 a, h3, h3 a { 00034 font-weight: bold; 00035 color: #ff9900; 00036 margin: 1.3em 0 8px 0; 00037 } 00038 00039 h1 { 00040 font-size: 1.3em; 00041 } 00042 00043 h2 { 00044 font-size: 1.2em; 00045 } 00046 00047 h3 { 00048 font-size: 1.1em; 00049 } 00050 00051 li { 00052 line-height: 1.4; 00053 } 00054 00055 #copyright { 00056 margin-top: 30px; 00057 line-height: 1.5em; 00058 text-align: center; 00059 font-size: .8em; 00060 color: #888888; 00061 clear: both; 00062 } 00063 </style> 00064 00065 </head> 00066 00067 <body> 00068 00069 <div id="xiphlogo"> 00070 <a href="http://www.xiph.org/"><img src="fish_xiph_org.png" alt="Fish Logo and Xiph.org"/></a> 00071 </div> 00072 00073 <h1>Ogg Vorbis I format specification: helper equations</h1> 00074 00075 <h1>Overview</h1> 00076 00077 <p>The equations below are used in multiple places by the Vorbis codec 00078 specification. Rather than cluttering up the main specification 00079 documents, they are defined here and linked in the main documents 00080 where appropriate.</p> 00081 00082 <h2><a name="log">ilog</a></h2> 00083 00084 <p>The "ilog(x)" function returns the position number (1 through n) of the 00085 highest set bit in the two's complement integer value 00086 <tt>[x]</tt>. Values of <tt>[x]</tt> less than zero are defined to return zero.</p> 00087 00088 <pre> 00089 1) [return_value] = 0; 00090 2) if ( [x] is greater than zero ){ 00091 00092 3) increment [return_value]; 00093 4) logical shift [x] one bit to the right, padding the MSb with zero 00094 5) repeat at step 2) 00095 00096 } 00097 00098 6) done 00099 </pre> 00100 00101 <p>Examples:</p> 00102 00103 <ul> 00104 <li>ilog(0) = 0;</li> 00105 <li>ilog(1) = 1;</li> 00106 <li>ilog(2) = 2;</li> 00107 <li>ilog(3) = 2;</li> 00108 <li>ilog(4) = 3;</li> 00109 <li>ilog(7) = 3;</li> 00110 <li>ilog(negative number) = 0;</li> 00111 </ul> 00112 00113 <h2><a name="float32_unpack">float32_unpack</a></h2> 00114 00115 <p>"float32_unpack(x)" is intended to translate the packed binary 00116 representation of a Vorbis codebook float value into the 00117 representation used by the decoder for floating point numbers. For 00118 purposes of this example, we will unpack a Vorbis float32 into a 00119 host-native floating point number.</p> 00120 00121 <pre> 00122 1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result) 00123 2) [sign] = [x] bitwise AND 0x80000000 (unsigned result) 00124 3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result) 00125 4) if ( [sign] is nonzero ) then negate [mantissa] 00126 5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) ) 00127 </pre> 00128 00129 <h2><a name="lookup1_values">lookup1_values</a></h2> 00130 00131 <p>"lookup1_values(codebook_entries,codebook_dimensions)" is used to 00132 compute the correct length of the value index for a codebook VQ lookup 00133 table of lookup type 1. The values on this list are permuted to 00134 construct the VQ vector lookup table of size 00135 <tt>[codebook_entries]</tt>.</p> 00136 00137 <p>The return value for this function is defined to be 'the greatest 00138 integer value for which <tt>[return_value] to the power of 00139 [codebook_dimensions] is less than or equal to 00140 [codebook_entries]</tt>'.</p> 00141 00142 <h2><a name="low_neighbor">low_neighbor</a></h2> 00143 00144 <p>"low_neighbor(v,x)" finds the position <i>n</i> in vector [v] of 00145 the greatest value scalar element for which <i>n</i> is less than 00146 <tt>[x]</tt> and <tt>vector [v] element <i>n</i> is less 00147 than vector [v] element [x]</tt>.</p> 00148 00149 <h2><a name="high_neighbor">high_neighbor</a></h2> 00150 00151 <p>"high_neighbor(v,x)" finds the position <i>n</i> in vector [v] of 00152 the lowest value scalar element for which <i>n</i> is less than 00153 <tt>[x]</tt> and <tt>vector [v] element <i>n</i> is greater 00154 than vector [v] element [x]</tt>.</p> 00155 00156 <h2><a name="render_point">render_point</a></h2> 00157 00158 <p>"render_point(x0,y0,x1,y1,X)" is used to find the Y value at point X 00159 along the line specified by x0, x1, y0 and y1. This function uses an 00160 integer algorithm to solve for the point directly without calculating 00161 intervening values along the line.</p> 00162 00163 <pre> 00164 1) [dy] = [y1] - [y0] 00165 2) [adx] = [x1] - [x0] 00166 3) [ady] = absolute value of [dy] 00167 4) [err] = [ady] * ([X] - [x0]) 00168 5) [off] = [err] / [adx] using integer division 00169 6) if ( [dy] is less than zero ) { 00170 00171 7) [Y] = [y0] - [off] 00172 00173 } else { 00174 00175 8) [Y] = [y0] + [off] 00176 00177 } 00178 00179 9) done 00180 </pre> 00181 00182 <h2><a name="render_line">render_line</a></h2> 00183 00184 <p>Floor decode type one uses the integer line drawing algorithm of 00185 "render_line(x0, y0, x1, y1, v)" to construct an integer floor 00186 curve for contiguous piecewise line segments. Note that it has not 00187 been relevant elsewhere, but here we must define integer division as 00188 rounding division of both positive and negative numbers toward zero.</p> 00189 00190 <pre> 00191 1) [dy] = [y1] - [y0] 00192 2) [adx] = [x1] - [x0] 00193 3) [ady] = absolute value of [dy] 00194 4) [base] = [dy] / [adx] using integer division 00195 5) [x] = [x0] 00196 6) [y] = [y0] 00197 7) [err] = 0 00198 00199 8) if ( [dy] is less than 0 ) { 00200 00201 9) [sy] = [base] - 1 00202 00203 } else { 00204 00205 10) [sy] = [base] + 1 00206 00207 } 00208 00209 11) [ady] = [ady] - (absolute value of [base]) * [adx] 00210 12) vector [v] element [x] = [y] 00211 00212 13) iterate [x] over the range [x0]+1 ... [x1]-1 { 00213 00214 14) [err] = [err] + [ady]; 00215 15) if ( [err] >= [adx] ) { 00216 00217 15) [err] = [err] - [adx] 00218 16) [y] = [y] + [sy] 00219 00220 } else { 00221 00222 17) [y] = [y] + [base] 00223 00224 } 00225 00226 18) vector [v] element [x] = [y] 00227 00228 } 00229 </pre> 00230 00231 <div id="copyright"> 00232 The Xiph Fish Logo is a 00233 trademark (™) of Xiph.Org.<br/> 00234 00235 These pages © 1994 - 2005 Xiph.Org. All rights reserved. 00236 </div> 00237 00238 </body> 00239 </html>