00001 <?xml version="1.0" standalone="no"?>
00002 <!DOCTYPE section PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
00003 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd" [
00004
00005 ]>
00006
00007 <section id="vorbis-spec-helper">
00008 <sectioninfo>
00009 <releaseinfo>
00010 $Id: 09-helper.xml 7186 2004-07-20 07:19:25Z xiphmont $
00011 </releaseinfo>
00012 </sectioninfo>
00013 <title>Helper equations</title>
00014
00015 <section>
00016 <title>Overview</title>
00017
00018 <para>
00019 The equations below are used in multiple places by the Vorbis codec
00020 specification. Rather than cluttering up the main specification
00021 documents, they are defined here and referenced where appropriate.
00022 </para>
00023
00024 </section>
00025
00026 <section>
00027 <title>Functions</title>
00028
00029 <section id="vorbis-spec-ilog">
00030 <title>ilog</title>
00031
00032 <para>
00033 The "ilog(x)" function returns the position number (1 through n) of the highest set bit in the two's complement integer value
00034 <varname>[x]</varname>. Values of <varname>[x]</varname> less than zero are defined to return zero.</para>
00035
00036 <programlisting>
00037 1) [return_value] = 0;
00038 2) if ( [x] is greater than zero ){
00039
00040 3) increment [return_value];
00041 4) logical shift [x] one bit to the right, padding the MSb with zero
00042 5) repeat at step 2)
00043
00044 }
00045
00046 6) done
00047 </programlisting>
00048
00049 <para>
00050 Examples:
00051
00052 <itemizedlist>
00053 <listitem><simpara>ilog(0) = 0;</simpara></listitem>
00054 <listitem><simpara>ilog(1) = 1;</simpara></listitem>
00055 <listitem><simpara>ilog(2) = 2;</simpara></listitem>
00056 <listitem><simpara>ilog(3) = 2;</simpara></listitem>
00057 <listitem><simpara>ilog(4) = 3;</simpara></listitem>
00058 <listitem><simpara>ilog(7) = 3;</simpara></listitem>
00059 <listitem><simpara>ilog(negative number) = 0;</simpara></listitem>
00060 </itemizedlist>
00061 </para>
00062
00063 </section>
00064
00065 <section id="vorbis-spec-float32_unpack">
00066 <title>float32_unpack</title>
00067
00068 <para>
00069 "float32_unpack(x)" is intended to translate the packed binary
00070 representation of a Vorbis codebook float value into the
00071 representation used by the decoder for floating point numbers. For
00072 purposes of this example, we will unpack a Vorbis float32 into a
00073 host-native floating point number.</para>
00074
00075 <programlisting>
00076 1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result)
00077 2) [sign] = [x] bitwise AND 0x80000000 (unsigned result)
00078 3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result)
00079 4) if ( [sign] is nonzero ) then negate [mantissa]
00080 5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) )
00081 </programlisting>
00082
00083 </section>
00084
00085 <section id="vorbis-spec-lookup1_values">
00086 <title>lookup1_values</title>
00087
00088 <para>
00089 "lookup1_values(codebook_entries,codebook_dimensions)" is used to
00090 compute the correct length of the value index for a codebook VQ lookup
00091 table of lookup type 1. The values on this list are permuted to
00092 construct the VQ vector lookup table of size
00093 <varname>[codebook_entries]</varname>.</para>
00094
00095 <para>
00096 The return value for this function is defined to be 'the greatest
00097 integer value for which <varname>[return_value] to the power of
00098 [codebook_dimensions] is less than or equal to
00099 [codebook_entries]</varname>'.</para>
00100
00101 </section>
00102
00103 <section id="vorbis-spec-low_neighbor">
00104 <title>low_neighbor</title>
00105
00106 <para>
00107 "low_neighbor(v,x)" finds the position <varname>n</varname> in vector <varname>[v]</varname> of
00108 the greatest value scalar element for which <varname>n</varname> is less than
00109 <varname>[x]</varname> and vector <varname>[v]</varname> element <varname>n</varname> is less
00110 than vector <varname>[v]</varname> element <varname>[x]</varname>.</para>
00111
00112 <section id="vorbis-spec-high_neighbor">
00113 <title>high_neighbor</title>
00114
00115 <para>
00116 "high_neighbor(v,x)" finds the position <varname>n</varname> in vector [v] of
00117 the lowest value scalar element for which <varname>n</varname> is less than
00118 <varname>[x]</varname> and vector <varname>[v]</varname> element <varname>n</varname> is greater
00119 than vector <varname>[v]</varname> element <varname>[x]</varname>.</para>
00120
00121 </section>
00122
00123 <section id="vorbis-spec-render_point">
00124 <title>render_point</title>
00125
00126 <para>
00127 "render_point(x0,y0,x1,y1,X)" is used to find the Y value at point X
00128 along the line specified by x0, x1, y0 and y1. This function uses an
00129 integer algorithm to solve for the point directly without calculating
00130 intervening values along the line.</para>
00131
00132 <programlisting>
00133 1) [dy] = [y1] - [y0]
00134 2) [adx] = [x1] - [x0]
00135 3) [ady] = absolute value of [dy]
00136 4) [err] = [ady] * ([X] - [x0])
00137 5) [off] = [err] / [adx] using integer division
00138 6) if ( [dy] is less than zero ) {
00139
00140 7) [Y] = [y0] - [off]
00141
00142 } else {
00143
00144 8) [Y] = [y0] + [off]
00145
00146 }
00147
00148 9) done
00149 </programlisting>
00150
00151 </section>
00152
00153 <section id="vorbis-spec-render_line">
00154 <title>render_line</title>
00155
00156 <para>
00157 Floor decode type one uses the integer line drawing algorithm of
00158 "render_line(x0, y0, x1, y1, v)" to construct an integer floor
00159 curve for contiguous piecewise line segments. Note that it has not
00160 been relevant elsewhere, but here we must define integer division as
00161 rounding division of both positive and negative numbers toward zero.
00162 </para>
00163
00164 <programlisting>
00165 1) [dy] = [y1] - [y0]
00166 2) [adx] = [x1] - [x0]
00167 3) [ady] = absolute value of [dy]
00168 4) [base] = [dy] / [adx] using integer division
00169 5) [x] = [x0]
00170 6) [y] = [y0]
00171 7) [err] = 0
00172
00173 8) if ( [dy] is less than 0 ) {
00174
00175 9) [sy] = [base] - 1
00176
00177 } else {
00178
00179 10) [sy] = [base] + 1
00180
00181 }
00182
00183 11) [ady] = [ady] - (absolute value of [base]) * [adx]
00184 12) vector [v] element [x] = [y]
00185
00186 13) iterate [x] over the range [x0]+1 ... [x1]-1 {
00187
00188 14) [err] = [err] + [ady];
00189 15) if ( [err] >= [adx] ) {
00190
00191 16) [err] = [err] - [adx]
00192 17) [y] = [y] + [sy]
00193
00194 } else {
00195
00196 18) [y] = [y] + [base]
00197
00198 }
00199
00200 19) vector [v] element [x] = [y]
00201
00202 }
00203 </programlisting>
00204
00205 </section>
00206
00207 </section>
00208
00209 </section>
00210
00211 </section>