00001 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 00002 <html> 00003 <head> 00004 00005 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-15"/> 00006 <title>Ogg Vorbis Documentation</title> 00007 00008 <style type="text/css"> 00009 body { 00010 margin: 0 18px 0 18px; 00011 padding-bottom: 30px; 00012 font-family: Verdana, Arial, Helvetica, sans-serif; 00013 color: #333333; 00014 font-size: .8em; 00015 } 00016 00017 a { 00018 color: #3366cc; 00019 } 00020 00021 img { 00022 border: 0; 00023 } 00024 00025 #xiphlogo { 00026 margin: 30px 0 16px 0; 00027 } 00028 00029 #content p { 00030 line-height: 1.4; 00031 } 00032 00033 h1, h1 a, h2, h2 a, h3, h3 a { 00034 font-weight: bold; 00035 color: #ff9900; 00036 margin: 1.3em 0 8px 0; 00037 } 00038 00039 h1 { 00040 font-size: 1.3em; 00041 } 00042 00043 h2 { 00044 font-size: 1.2em; 00045 } 00046 00047 h3 { 00048 font-size: 1.1em; 00049 } 00050 00051 li { 00052 line-height: 1.4; 00053 } 00054 00055 #copyright { 00056 margin-top: 30px; 00057 line-height: 1.5em; 00058 text-align: center; 00059 font-size: .8em; 00060 color: #888888; 00061 clear: both; 00062 } 00063 </style> 00064 00065 </head> 00066 00067 <body> 00068 00069 <div id="xiphlogo"> 00070 <a href="http://www.xiph.org/"><img src="fish_xiph_org.png" alt="Fish Logo and Xiph.org"/></a> 00071 </div> 00072 00073 <h1>Ogg logical bitstream framing</h1> 00074 00075 <h2>Ogg bitstreams</h2> 00076 00077 <p>The Ogg transport bitstream is designed to provide framing, error 00078 protection and seeking structure for higher-level codec streams that 00079 consist of raw, unencapsulated data packets, such as the Vorbis audio 00080 codec or Tarkin video codec.</p> 00081 00082 <h2>Application example: Vorbis</h2> 00083 00084 <p>Vorbis encodes short-time blocks of PCM data into raw packets of 00085 bit-packed data. These raw packets may be used directly by transport 00086 mechanisms that provide their own framing and packet-separation 00087 mechanisms (such as UDP datagrams). For stream based storage (such as 00088 files) and transport (such as TCP streams or pipes), Vorbis uses the 00089 Ogg bitstream format to provide framing/sync, sync recapture 00090 after error, landmarks during seeking, and enough information to 00091 properly separate data back into packets at the original packet 00092 boundaries without relying on decoding to find packet boundaries.</p> 00093 00094 <h2>Design constraints for Ogg bitstreams</h2> 00095 00096 <ol> 00097 <li>True streaming; we must not need to seek to build a 100% 00098 complete bitstream.</li> 00099 <li>Use no more than approximately 1-2% of bitstream bandwidth for 00100 packet boundary marking, high-level framing, sync and seeking.</li> 00101 <li>Specification of absolute position within the original sample 00102 stream.</li> 00103 <li>Simple mechanism to ease limited editing, such as a simplified 00104 concatenation mechanism.</li> 00105 <li>Detection of corruption, recapture after error and direct, random 00106 access to data at arbitrary positions in the bitstream.</li> 00107 </ol> 00108 00109 <h2>Logical and Physical Bitstreams</h2> 00110 00111 <p>A <em>logical</em> Ogg bitstream is a contiguous stream of 00112 sequential pages belonging only to the logical bitstream. A 00113 <em>physical</em> Ogg bitstream is constructed from one or more 00114 than one logical Ogg bitstream (the simplest physical bitstream 00115 is simply a single logical bitstream). We describe below the exact 00116 formatting of an Ogg logical bitstream. Combining logical 00117 bitstreams into more complex physical bitstreams is described in the 00118 <a href="oggstream.html">Ogg bitstream overview</a>. The exact 00119 mapping of raw Vorbis packets into a valid Ogg Vorbis physical 00120 bitstream is described in <a href="vorbis-stream.html">Vorbis 00121 bitstream mapping</a>.</p> 00122 00123 <h2>Bitstream structure</h2> 00124 00125 <p>An Ogg stream is structured by dividing incoming packets into 00126 segments of up to 255 bytes and then wrapping a group of contiguous 00127 packet segments into a variable length page preceded by a page 00128 header. Both the header size and page size are variable; the page 00129 header contains sizing information and checksum data to determine 00130 header/page size and data integrity.</p> 00131 00132 <p>The bitstream is captured (or recaptured) by looking for the beginning 00133 of a page, specifically the capture pattern. Once the capture pattern 00134 is found, the decoder verifies page sync and integrity by computing 00135 and comparing the checksum. At that point, the decoder can extract the 00136 packets themselves.</p> 00137 00138 <h3>Packet segmentation</h3> 00139 00140 <p>Packets are logically divided into multiple segments before encoding 00141 into a page. Note that the segmentation and fragmentation process is a 00142 logical one; it's used to compute page header values and the original 00143 page data need not be disturbed, even when a packet spans page 00144 boundaries.</p> 00145 00146 <p>The raw packet is logically divided into [n] 255 byte segments and a 00147 last fractional segment of < 255 bytes. A packet size may well 00148 consist only of the trailing fractional segment, and a fractional 00149 segment may be zero length. These values, called "lacing values" are 00150 then saved and placed into the header segment table.</p> 00151 00152 <p>An example should make the basic concept clear:</p> 00153 00154 <pre> 00155 <tt> 00156 raw packet: 00157 ___________________________________________ 00158 |______________packet data__________________| 753 bytes 00159 00160 lacing values for page header segment table: 255,255,243 00161 </tt> 00162 </pre> 00163 00164 <p>We simply add the lacing values for the total size; the last lacing 00165 value for a packet is always the value that is less than 255. Note 00166 that this encoding both avoids imposing a maximum packet size as well 00167 as imposing minimum overhead on small packets (as opposed to, eg, 00168 simply using two bytes at the head of every packet and having a max 00169 packet size of 32k. Small packets (<255, the typical case) are 00170 penalized with twice the segmentation overhead). Using the lacing 00171 values as suggested, small packets see the minimum possible 00172 byte-aligned overheade (1 byte) and large packets, over 512 bytes or 00173 so, see a fairly constant ~.5% overhead on encoding space.</p> 00174 00175 <p>Note that a lacing value of 255 implies that a second lacing value 00176 follows in the packet, and a value of < 255 marks the end of the 00177 packet after that many additional bytes. A packet of 255 bytes (or a 00178 multiple of 255 bytes) is terminated by a lacing value of 0:</p> 00179 00180 <pre><tt> 00181 raw packet: 00182 _______________________________ 00183 |________packet data____________| 255 bytes 00184 00185 lacing values: 255, 0 00186 </tt></pre> 00187 00188 <p>Note also that a 'nil' (zero length) packet is not an error; it 00189 consists of nothing more than a lacing value of zero in the header.</p> 00190 00191 <h3>Packets spanning pages</h3> 00192 00193 <p>Packets are not restricted to beginning and ending within a page, 00194 although individual segments are, by definition, required to do so. 00195 Packets are not restricted to a maximum size, although excessively 00196 large packets in the data stream are discouraged; the Ogg 00197 bitstream specification strongly recommends nominal page size of 00198 approximately 4-8kB (large packets are foreseen as being useful for 00199 initialization data at the beginning of a logical bitstream).</p> 00200 00201 <p>After segmenting a packet, the encoder may decide not to place all the 00202 resulting segments into the current page; to do so, the encoder places 00203 the lacing values of the segments it wishes to belong to the current 00204 page into the current segment table, then finishes the page. The next 00205 page is begun with the first value in the segment table belonging to 00206 the next packet segment, thus continuing the packet (data in the 00207 packet body must also correspond properly to the lacing values in the 00208 spanned pages. The segment data in the first packet corresponding to 00209 the lacing values of the first page belong in that page; packet 00210 segments listed in the segment table of the following page must begin 00211 the page body of the subsequent page).</p> 00212 00213 <p>The last mechanic to spanning a page boundary is to set the header 00214 flag in the new page to indicate that the first lacing value in the 00215 segment table continues rather than begins a packet; a header flag of 00216 0x01 is set to indicate a continued packet. Although mandatory, it 00217 is not actually algorithmically necessary; one could inspect the 00218 preceding segment table to determine if the packet is new or 00219 continued. Adding the information to the packet_header flag allows a 00220 simpler design (with no overhead) that needs only inspect the current 00221 page header after frame capture. This also allows faster error 00222 recovery in the event that the packet originates in a corrupt 00223 preceding page, implying that the previous page's segment table 00224 cannot be trusted.</p> 00225 00226 <p>Note that a packet can span an arbitrary number of pages; the above 00227 spanning process is repeated for each spanned page boundary. Also a 00228 'zero termination' on a packet size that is an even multiple of 255 00229 must appear even if the lacing value appears in the next page as a 00230 zero-length continuation of the current packet. The header flag 00231 should be set to 0x01 to indicate that the packet spanned, even though 00232 the span is a nil case as far as data is concerned.</p> 00233 00234 <p>The encoding looks odd, but is properly optimized for speed and the 00235 expected case of the majority of packets being between 50 and 200 00236 bytes (note that it is designed such that packets of wildly different 00237 sizes can be handled within the model; placing packet size 00238 restrictions on the encoder would have only slightly simplified design 00239 in page generation and increased overall encoder complexity).</p> 00240 00241 <p>The main point behind tracking individual packets (and packet 00242 segments) is to allow more flexible encoding tricks that requiring 00243 explicit knowledge of packet size. An example is simple bandwidth 00244 limiting, implemented by simply truncating packets in the nominal case 00245 if the packet is arranged so that the least sensitive portion of the 00246 data comes last.</p> 00247 00248 <h3>Page header</h3> 00249 00250 <p>The headering mechanism is designed to avoid copying and re-assembly 00251 of the packet data (ie, making the packet segmentation process a 00252 logical one); the header can be generated directly from incoming 00253 packet data. The encoder buffers packet data until it finishes a 00254 complete page at which point it writes the header followed by the 00255 buffered packet segments.</p> 00256 00257 <h4>capture_pattern</h4> 00258 00259 <p>A header begins with a capture pattern that simplifies identifying 00260 pages; once the decoder has found the capture pattern it can do a more 00261 intensive job of verifying that it has in fact found a page boundary 00262 (as opposed to an inadvertent coincidence in the byte stream).</p> 00263 00264 <pre><tt> 00265 byte value 00266 00267 0 0x4f 'O' 00268 1 0x67 'g' 00269 2 0x67 'g' 00270 3 0x53 'S' 00271 </tt></pre> 00272 00273 <h4>stream_structure_version</h4> 00274 00275 <p>The capture pattern is followed by the stream structure revision:</p> 00276 00277 <pre><tt> 00278 byte value 00279 00280 4 0x00 00281 </tt></pre> 00282 00283 <h4>header_type_flag</h4> 00284 00285 <p>The header type flag identifies this page's context in the bitstream:</p> 00286 00287 <pre><tt> 00288 byte value 00289 00290 5 bitflags: 0x01: unset = fresh packet 00291 set = continued packet 00292 0x02: unset = not first page of logical bitstream 00293 set = first page of logical bitstream (bos) 00294 0x04: unset = not last page of logical bitstream 00295 set = last page of logical bitstream (eos) 00296 </tt></pre> 00297 00298 <h4>absolute granule position</h4> 00299 00300 <p>(This is packed in the same way the rest of Ogg data is packed; LSb 00301 of LSB first. Note that the 'position' data specifies a 'sample' 00302 number (eg, in a CD quality sample is four octets, 16 bits for left 00303 and 16 bits for right; in video it would likely be the frame number. 00304 It is up to the specific codec in use to define the semantic meaning 00305 of the granule position value). The position specified is the total 00306 samples encoded after including all packets finished on this page 00307 (packets begun on this page but continuing on to the next page do not 00308 count). The rationale here is that the position specified in the 00309 frame header of the last page tells how long the data coded by the 00310 bitstream is. A truncated stream will still return the proper number 00311 of samples that can be decoded fully.</p> 00312 00313 <p>A special value of '-1' (in two's complement) indicates that no packets 00314 finish on this page.</p> 00315 00316 <pre><tt> 00317 byte value 00318 00319 6 0xXX LSB 00320 7 0xXX 00321 8 0xXX 00322 9 0xXX 00323 10 0xXX 00324 11 0xXX 00325 12 0xXX 00326 13 0xXX MSB 00327 </tt></pre> 00328 00329 <h4>stream serial number</h4> 00330 00331 <p>Ogg allows for separate logical bitstreams to be mixed at page 00332 granularity in a physical bitstream. The most common case would be 00333 sequential arrangement, but it is possible to interleave pages for 00334 two separate bitstreams to be decoded concurrently. The serial 00335 number is the means by which pages physical pages are associated with 00336 a particular logical stream. Each logical stream must have a unique 00337 serial number within a physical stream:</p> 00338 00339 <pre><tt> 00340 byte value 00341 00342 14 0xXX LSB 00343 15 0xXX 00344 16 0xXX 00345 17 0xXX MSB 00346 </tt></pre> 00347 00348 <h4>page sequence no</h4> 00349 00350 <p>Page counter; lets us know if a page is lost (useful where packets 00351 span page boundaries).</p> 00352 00353 <pre><tt> 00354 byte value 00355 00356 18 0xXX LSB 00357 19 0xXX 00358 20 0xXX 00359 21 0xXX MSB 00360 </tt></pre> 00361 00362 <h4>page checksum</h4> 00363 00364 <p>32 bit CRC value (direct algorithm, initial val and final XOR = 0, 00365 generator polynomial=0x04c11db7). The value is computed over the 00366 entire header (with the CRC field in the header set to zero) and then 00367 continued over the page. The CRC field is then filled with the 00368 computed value.</p> 00369 00370 <p>(A thorough discussion of CRC algorithms can be found in <a 00371 href="ftp://ftp.rocksoft.com/papers/crc_v3.txt">"A 00372 Painless Guide to CRC Error Detection Algorithms"</a> by Ross 00373 Williams <a 00374 href="mailto:ross@guest.adelaide.edu.au">ross@guest.adelaide.edu.au</a>.)</p> 00375 00376 <pre><tt> 00377 byte value 00378 00379 22 0xXX LSB 00380 23 0xXX 00381 24 0xXX 00382 25 0xXX MSB 00383 </tt></pre> 00384 00385 <h4>page_segments</h4> 00386 00387 <p>The number of segment entries to appear in the segment table. The 00388 maximum number of 255 segments (255 bytes each) sets the maximum 00389 possible physical page size at 65307 bytes or just under 64kB (thus 00390 we know that a header corrupted so as destroy sizing/alignment 00391 information will not cause a runaway bitstream. We'll read in the 00392 page according to the corrupted size information that's guaranteed to 00393 be a reasonable size regardless, notice the checksum mismatch, drop 00394 sync and then look for recapture).</p> 00395 00396 <pre><tt> 00397 byte value 00398 00399 26 0x00-0xff (0-255) 00400 </tt></pre> 00401 00402 <h4>segment_table (containing packet lacing values)</h4> 00403 00404 <p>The lacing values for each packet segment physically appearing in 00405 this page are listed in contiguous order.</p> 00406 00407 <pre><tt> 00408 byte value 00409 00410 27 0x00-0xff (0-255) 00411 [...] 00412 n 0x00-0xff (0-255, n=page_segments+26) 00413 </tt></pre> 00414 00415 <p>Total page size is calculated directly from the known header size and 00416 lacing values in the segment table. Packet data segments follow 00417 immediately after the header.</p> 00418 00419 <p>Page headers typically impose a flat .25-.5% space overhead assuming 00420 nominal ~8k page sizes. The segmentation table needed for exact 00421 packet recovery in the streaming layer adds approximately .5-1% 00422 nominal assuming expected encoder behavior in the 44.1kHz, 128kbps 00423 stereo encodings.</p> 00424 00425 <div id="copyright"> 00426 The Xiph Fish Logo is a 00427 trademark (™) of Xiph.Org.<br/> 00428 00429 These pages © 1994 - 2005 Xiph.Org. All rights reserved. 00430 </div> 00431 00432 </body> 00433 </html>